On the Relative Succinctness of Nondeterministic Büchi and co-Büchi Word Automata
نویسندگان
چکیده
The practical importance of automata on infinite objects has motivated a re-examination of the complexity of automata-theoretic constructions. One such construction is the translation, when possible, of nondeterministic Büchi word automata (NBW) to nondeterministic co-Büchi word automata (NCW). Among other applications, it is used in the translation (when possible) of LTL to the alternation-free μ-calculus. The best known upper bound for the translation of NBW to NCW is exponential (given an NBW with n states, the best translation yields an equivalent NCW with 2 log n) states). On the other hand, the best known lower bound is trivial (no NBW with n states whose equivalent NCW requires even n+1 states is known). In fact, only recently was it shown that there is an NBW whose equivalent NCW requires a different structure. In this paper we improve the lower bound by showing that for every integer k ≥ 1 there is a language Lk over a two-letter alphabet, such that Lk can be recognized by an NBW with 2k+1 states, whereas the minimal NCW that recognizes Lk has 3k states. Even though this gap is not asymptotically very significant, it nonetheless demonstrates for the first time that NBWs are more succinct than NCWs. In addition, our proof points to a conceptual advantage of the Büchi condition: an NBW can abstract precise counting by counting to infinity with two states. To complete the picture, we consider also the reverse NCW to NBW translation, and show that the known upper bound, which duplicates the state space, is tight.
منابع مشابه
On the Succinctness of Nondeterminism
Much is known about the differences in expressiveness and succinctness between nondeterministic and deterministic automata on infinite words. Much less is known about the relative succinctness of the different classes of nondeterministic automata. For example, while the best translation from a nondeterministic Büchi automaton to a nondeterministic co-Büchi automaton is exponential, and involves...
متن کاملLower Bounds on Witnesses for Nonemptiness of Universal Co-Büchi Automata
The nonemptiness problem for nondeterministic automata on infinite words can be reduced to a sequence of reachability queries. The length of a shortest witness to the nonemptiness is then polynomial in the automaton. Nonemptiness algorithms for alternating automata translate them to nondeterministic automata. The exponential blow-up that the translation involves is justified by lower bounds for...
متن کاملCo-Büching Them All
We solve the open problems of translating, when possible, all common classes of nondeterministic word automata to deterministic and nondeterministic co-Büchi word automata. The handled classes include Büchi, parity, Rabin, Streett and Muller automata. The translations follow a unified approach and are all asymptotically tight. The problem of translating Büchi automata to equivalent co-Büchi aut...
متن کاملOn the Complexity of Parity Word Automata
Different types of nondeterministic automata on infinite words differ in their succinctness and in the complexity for their nonemptiness problem. A simple translation of a parity automaton to an equivalent Büchi automaton is quadratic: a parity automaton with n states, m transitions, and index k may result in a Büchi automaton of size O((n + m)k). The best known algorithm for the nonemptiness p...
متن کاملTypeness for ω-Regular Automata
We introduce and study three notions of typeness for automata on infinite words. For an acceptance-condition class γ (that is, γ is weak, Büchi, co-Büchi, Rabin, or Streett), deterministic γ-typeness asks for the existence of an equivalent γ-automaton on the same deterministic structure, nondeterministic γ-typeness asks for the existence of an equivalent γ-automaton on the same structure, and γ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008